Nonlinear optimal suppression of vortex shedding from a circular cylinder

نویسندگان

  • X. Mao
  • H. M. Blackburn
  • S. J. Sherwin
چکیده

This study is focused on twoand three-dimensional incompressible flow past a circular cylinder for Reynolds number Re 6 1000. To gain insight into the mechanisms underlying the suppression of unsteadiness for this flow we determine the nonlinear optimal open-loop control driven by surface-normal wall transpiration. The spanwise-constant wall transpiration is allowed to oscillate in time, although steady forcing is determined to be most effective. At low levels of control cost, defined as the square integration of the control, the sensitivity of unsteadiness with respect to wall transpiration is a good approximation of the optimal control. The distribution of this sensitivity suggests that the optimal control at small magnitude is achieved by applying suction upstream of the upper and lower separation points and blowing at the trailing edge. At high levels of wall transpiration, the assumptions underlying the linearized sensitivity calculation become invalid since the base flow is eventually altered by the size of the control forcing. The large-magnitude optimal control is observed to spread downstream of the separation point and draw the shear layer separation towards the rear of the cylinder through suction, while blowing along the centreline eliminates the recirculation bubble in the wake. We further demonstrate that it is possible to completely suppress vortex shedding in twoand three-dimensional flow past a circular cylinder up to Re = 1000, accompanied by 70 % drag reduction when a nonlinear optimal control of moderate magnitude (with root-mean-square value 8 % of the free-stream velocity) is applied. This is confirmed through linearized stability analysis about the steady-state solution when the nonlinear optimal wall transpiration is applied. While continuously distributed wall transpiration is not physically realizable, the study highlights localized regions where discrete control strategies could be further developed. It also highlights the appropriate range of application of linear and nonlinear optimal control to this type of flow problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Field Around a Circular Cylinder with Periodic Vortex Shedding

A numerical study is carried out to investigate the laminar forced convection heat transfer from a circular cylinder. The fluid is assumed to be incompressible, the Reynolds number ranged from 0.1 to 1000, and the Prandtl number was equal to 0.7. The range of study includes heat transfer in creeping flow (Re40). The equations were discretized by a control-volume-based finite difference techniqu...

متن کامل

Effects Of Frequency Variation At Inlet Flow On The Vortex Shedding Frequency Behind A Circular Cylinder

In many applications the flow that past bluff bodies has frequency nature (oscillated) and it is not uniform. This kind of flow has effects on the formation of vortex shedding behind bluff bodies. In this paper the flow around a circular cylinder was numerically simulated. The effects of frequency variation at inlet flow on the vortex shedding frequency were investigated. The transient Two-Dime...

متن کامل

Suppression of Vortex Shedding from a Circular Cylinder by using a Suction Flow Control Method

An experimental study was conduct to suppress the vortex shedding from a circular cylinder by using a suction flow control method. The suction flow control was accomplished using two suction holes located on the test cylinder model at an angle of 90.0 degrees in relation to the oncoming flow direction. In addition to measuring the pressure distributions around the test model, a high-resolution ...

متن کامل

Suppression of Vortex Shedding from a Circular Cylinder by using a Traveling Wave Wall

An experimental study was conducted to suppress the unsteady vortex shedding from a circular cylinder by using a traveling wave wall (TWW). The leeward surfaces of the circular cylinder model were replaced by wave surfaces, which can move to form symmetrical TWW when driven by a motor system. The propagation speed of the wave was adjustable by controlling the rotational speed of the motor. Duri...

متن کامل

Visualization study on suppression of vortex shedding from a cylinder

A narrow strip has been introduced as a control element to suppress vortex shedding from a cylinder. The strip is set parallel to the cylinder axis, and the key parameter of control in this study is the strip position, which is determined by the angle of attack of the strip and the distance between the strip and the cylinder axis. A circular cylinder and a square cylinder were tested respective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015